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A method is presented for the construction of transient responses in the
vapor heating of metallic components of a power unit on starting. An
analytical relationship is derived to relate overregulation in a system

to the period between the separate instants at which the rates of tem-

perature rise in the metal are measured.

To avoid intolerable thermal stresses in the vapor
heating of metal components of complex configuration
in a power unit (a boiler, a turbine) protected by insu-
lation, the rate of the temperature rise in the metal
must be regulated at a number of points. Since the
time for the heating of the components, as a rule,
must be kept to a minimum, automatic devices are
called upon to maintain the maximum permissiblerate
of temperature rise. This rate serves as the decisive
parameter in the automatic control of the metal-heat-
ing process.

The temperature rise at selected points is moni~
tored periodically and elements of lag therefore nec-
essarily appear in the automatic-control system. How-
ever, the existence of one or more elements exhibiting
lag in an automatic system, as is well known, results
in a transcendental equation for the control system.
Estimates of the overregulation make it possible to
clarify the extent to which basic characteristics of
individual elements of the control system, including
the delay elements, have been properly selected.

As is well known, metal heating may be described
by differential equations compiled on the basis of a
heat balance, and these are of the form

A
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Equations (1) and (2) have been written in analogy
with the differential equations of Campbell, cited in
[1]. Campbell notes that in a number of cases we can
adopt an elementary approach to the problem of dy-
namics, involving the assumption that the rate of the
temperature rise in the body is proportional to the
total quantity of heat transmitted to the body by con-
vection, conduction, and radiation:

dr
ar = Hconv+ Hcond + Hrad'

pc,V
This nonlinear equation in certain cases is easily
linearized. For example, in the case of heat transfer
by heat conduction the rate of change in the average
temperature T for the volume of a material is defined
from the differential equation

T
¢ = G(T1,,—T).

As demonstrated in our research, the Campbell
equations are more convenient for the practical calcu-
lations of the systems being analyzed than is an equa-
tion of the form

or o
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having the corresponding boundary conditions.
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Fig. 1. Control system of controlled object.
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+ ViVl m (0)} , (3)

. Moy
Ti(p)viVicip = 5, [mi (T (p) —T; (PN +
+ ai.aFi’a [Ta (p)“Tl(p)] +
+v; VieiT; (0). (4)

Using expressions (3) and (4), we construct a con-
trol system for the controlled object (Fig. 1).
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Fig. 2. Comparison of electromodeling curves;
1) time variation in temperature of metal on
heating (°C)(solidline); 2) time variation of tem-
perature growth rate (°C/sec) (dashed line,
assumptions T;(0) = 0 and T,(0) = 0).

The modeling of this circuit on an MN-7 electronic
analog computer demonstrated that the specified values
of the initial insulation temperature T;(0) and the
ambient temperature T,(0) have but a slight effect on
the nature of the process involved in the heating of the
metal. Indeed, comparison of the electronic simula-
tion curves (Fig. 2) shows that the maximum error
resulting from neglect of these terms does not exceed
2%. This made it possible to simplify the control cir-
cuit of the object, thus facilitating the analysis of the
operation for the entire system of heating-rate control.

The assumptions T;(0) = 0 and T,(0) = 0 in the
Laplace-transform differential equations of the object
make it possible to derive a transfer function conven-
ient for practical calculations.

"The control system for the heating-rate control of
the metal is shown in Fig. 3 where the controlled
object has been arbitrarily divided into two parts. The
input quantity for the I-st part of the object is the
vapor flow rate G, while the output quantity is the
vapor temperature T,. The latter serves as the input
quantity for the II-nd part of the object at whose out-
put the rate of change in the metal temperature is
measured: V = dTy, /dt.

The circuit includes a link in which there is delay
and this, as indicated earlier, is brought about by the
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measurement of the quantity V at discrete intervals of
time which are functions of the design of the scanning
device.

The following equations can be set up for the indi-
vidual links of the system:

1) the relay element

k, when x>0, .
Y710 when x<0; ©)

2) the electric motor

dg
Ti—=u (6)

3) the regulating valve

G= kg (7
4) the I-st part of the object

T, = kG; (8)
5) the II-nd part of the object

Ymvrricm dTm ; .
oy For @ TTeo=T

v'm Vm

when T, = T; with consideration of the fact that the
quantities T;(0) and T,(p) have been neglected. Having
differentiated this expression and having carried out a
Laplace transformation, we have

(Tp+ DV(p) =pT, (p); (9)
6) the measuring device
Woalp) =t (10)
7) the delay link
W: (p) = exp[—1pl (11)

1t follows from the structural diagram (Fig. 3)that
the transfer function of the linear portion of the con-
trol system can be written as follows:

W(p) = Wl (p) W/vul (p) Wlp.o (p) X
X W p.o(p) 1V;n.d.(p) V. (p)- (12)

Having substituted the values of the transfer functions
for the separate elements of the system to the right-
hand part of expression (12), we obtain

k
W (p) = Tor1 P [—rpl (13)

Considering the specific features of the relay ele-
ment [2], we find that the linear portion of the system
is subject to rectangular pulses of constant amplitude
whose sign, duration, and relative position are func-
tions both of the external effect and of the state of the
linear portion of the system. In the general case, the
parameters of the pulses are functions of the control
signal and of the threshold values of the relay element.
The control effect is constant between the adjacent
switching times tp and t.,,.

With actuation of the relay on attainment of the
maximum rate of temperature rise, the lifting of the
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Fig. 3. Control system of heating rate control: I) relay

element; II) electromotor; III) regulating valve; IV)

first part of object; V) second part of object; VI) mea-
suring device; VII) delay link.

regulating valve in the control system under consid-
eration ceases. No provision is made for reverse
operation of the valve to avoid a delay in the heating
time. In this connection, the static characteristic of
the relay element in the system under consideration
is described by Eq. (5) rather than by the equation
y = k,signx,

For the given relay element we can write the trans-
form of a control effect of duration tk+1 - ty, begin-
ning with the instant ¢, as

k. ( exp [— pi,] — exp [Pr) )
+
p 2

. Ry [exp[—pt ] —exp[— ply,] )

The inverse transform of the regulated quantity z(t) is
given in the form of a sum of the components

z2() =2z() + 2 (), (14)

From expressions (14), (15), and (16) we obtain the
final value for the controlled quantity in expanded form:

z(ty=
(kA () when 0<Cf<?y,
= {kh(t) —kh{t—1) when ¢, <t <ty (17)
kh(t) —Rh(E—1) + kA (I—~t)whent, < f < f;

It follows from expression (17) that to calculate
z(t), i.e., to construct the transient response, it is
necessary, first of all, to calculate the time charac-
teristic of the linear portion of the system and todeter-
mine the switching times t;.. The calculation of the
time characteristic h(t) of the linear portion of the
system is possible by analytical, graphical, and simi-
lar methods. The switching times tx which are roots
of the equation X(f;.) = 0 are most conveniently deter-
mined graphically, with the simultaneous construction
of the transient response z(t).

For the system under consideration, the time char-
acteristic is calculated by means of the expansion
formula

where
" PO ' Pipy)
2@ =[5 h0 + Vtrhe—0) | as) KO= g + L om0

= where
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Fig. 4. Curves of transient processes in heating: 1)1 = 2 min;
T =17 min; 2) 2 and 10; 3) 2 and 4.
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With introduction of the dimensionless magnitudes of
the instantaneous time t = t/T and the time of pure
delay 7 = 7/T, the time characteristic h(t) assumes
the form

h(t) =K{1 —exp[—({ — D)} (18)

In constructing the transient responses we employ
the Tsypkin method [2].

Figure 4 shows the transient responses constructed
for the case in which the external effect applied to the
input of the relay element at the instant T = 0 changes
in jumpwise fashion and then remains constant and
equal to unity, i.e., f{) =1 whent = 0.

An examination of the transient responses for vari-
ous values of the time constant T is made necessary by
the fact that the quantity T diminishes with increasing
temperature as a result of the increase in the heat-
transfer coefficient %y m- The curves show that as T
diminishes the overregulation of the quantity z(t)grad-
ually increases, becoming more than 4 times as great
when T =4 min. Thus, from the construction of the
transient responses we see the effect exerted on the
dynamics of the system by the continuously varying
time constant T.

It is easy to see that the overregulation will increase
even if the time 7 of pure delay increases when T =
= const, i.e., with an increase in the period of com-
plete sweep of the scanning device. Indeed, the greater
the scanning cycle, the longer the system remains
without the effect of negative feedback, i.e., the
parameter being regulated is somewhat beyond control
and attains a correspondingly greater magnitude dur-
ing this period. In the general case, the overregulation
in the system is a function of the relative magnitude
T =1/T. ,

The solution of the reverse problem is of interest
in the design of an automatic control system, i.e., the
evaluation of the maximum possible period between
the instants at which the measurements are carried
out on the basis of the specified overregulation magni-
tude. Therefore, we must obtain an analytical func-
tion relating the relative overregulation II and the
relative delay 7.

As follows from the evaluation of the transient
responses, the first maximum of overregulation of the
controlled parameter occurs at an instant of time de-
fined as

(19)

where ?(!_ —, is the time during which the controlled

parameter, varying from zero, reaches a value equal
in magnitude to the external effect (in our case, f(f) =
=1).

On elapse of the delay time 7, the controlled param-
eter varies according to the law z(t) = k,h(t) all the
way to the instant at which the first overregulation
maximum sets in, and this always occurs in the inter-
val t; <t <ty

With (18) and (19) we obtain

T=K{1—exp[—4]}. (20)
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The time t(_—tl as we can see from the curves of

_?'j ’
the transient responses, is constant in all cases, and
therefore

K{l —exp [“?(EA?)” =1
and ’
K

@O =In"g ] (1)

Having substituted the value of the time #j -,

into expression (20), by means of simple transforma-
tions we find

ﬁ:K{l—exp[——(ln K

K—1
Tom K=l (22)
K-—TII

The derived formula relates the relative delay in
the system with the relative overregulation in the
transient response. By means of this formula we
determine the required cycle for the complete sweep
of the scanning device, given a known magnitude for
the time constant T in the case of a specified relative
overregulation Il in the system, and we also evaluate
the possible overregulation in the control system for
the metal-heating process.

The chosen control system for which the problem
of evaluating the possible overregulation has been
solved may be regarded as a typical automatic control
system since it exhibits a simple structural diagram
and includes generally accepted units and links.

NOTATION

Ym &nd v; are the specific weights of the metal and
the insulation, respectively; ¢y, and c; are the specific
heat capacities of the metal and the insulation; Ty, Ty,
Ti, and T, are the temperatures of vapor, metal,
insulation, and surrounding air, respectively; Fy m-
Fm,i’ and Fi,a are the surfaces with heat flux from
vapor to metal, from metal to insulation, and from
insulation to surrounding air, respectively; A; is the
thermal conductivity coefficient of insulation; &; is the
thickness of the insulation; &y v, and o4 5 are the
heat transfer coefficients from vapor to metal and
from insulation to air.
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